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Abstract

Studying the space-mapping technique by Bandler et al. [J. Bandler, R. Biernacki, S. Chen, P. Grobelny, R.H. Hem-
mers, Space mapping technique for electromagnetic optimization, IEEE Trans. Microwave Theory Tech. 42 (1994)
2536–2544] for the solution of optimization problems, we observe the possible difference between the solution of the opti-
mization problem and the computed space-mapping solution. We repair this discrepancy by exploiting the correspondence
with defect-correction iteration and we construct the manifold-mapping algorithm, which is as efficient as the space-map-
ping algorithm but converges to the exact solution.

To increase the robustness of the algorithm we introduce a trust-region strategy (a regularization technique) based on
the generalized singular value decomposition of the linearized fine and coarse manifold representations. The effect of this
strategy is shown by the solution of a variety of small non-linear least squares problems. Finally we show the use of the
technique for a more challenging engineering problem.
� 2007 Elsevier Inc. All rights reserved.

PACS: 02.60.Pn

Keywords: Multilevel optimization; Defect-correction; Space-mapping; Manifold-mapping; Trust-region methods
1. Introduction

In practice design problems often require expensive numerical simulations to model the phenomenon that
has to be optimized. Because, generally, numerical optimization is an iterative process, many of these time-
consuming simulations are needed before a satisfactory solution is found. Space mapping, introduced by
Bandler et al. [1–3], is a technique for reducing the computing time in such procedures by the use of simpler
surrogate models. Space mapping involves both the accurate (and time-consuming) model and a less accurate
(but cheaper) one.

The classical space-mapping procedure uses right-preconditioning of the coarse (inaccurate) model in order
to accelerate the iterative procedure for the optimization of the fine (accurate) one. We show in [4] that right-
preconditioning is generally insufficient and (also) left-preconditioning is needed. This leads to the improved
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space-mapping or ‘manifold-mapping’ procedure1. In addition, to make the method more efficient for non-lin-
ear and strongly ill-conditioned problems, we introduce a trust-region strategy that prevents the method from
seeking a local optimum that is too far away from the solution of the coarse problem.
2. Fine and coarse models in optimization

2.1. The optimization problem

Let the specifications of an optimization problem be denoted by ðt; yÞ � ðftig; fyigÞi¼1;...;m. Here, the inde-
pendent variable is t 2 Rm, and the dependent variable y 2 Y represents the quantities that describe the behav-
iour of the phenomena under study. The set Y � Rm is the set of possible aims.

The variable y does not only depend on t but also on control/design variables, x. The difference between the
measured data yi and the values yðti; xÞ may be the result of, e.g., measurement errors or the imperfection of
the mathematical description.

Models that describe reality appear in several degrees of sophistication. Space mapping exploits the com-
bination of the simplicity of the less sophisticated methods with the accuracy of the more complex ones. There-
fore we distinguish the fine and the coarse model.

2.2. The fine model

The fine model response is denoted by fðxÞ 2 Rm, with x 2 X � Rn the fine model control variable. The set
fðX Þ � Rm represents the fine model reachable aims. The fine model is assumed to be accurate but expensive to
evaluate. For the optimization problem a fine model cost function, kfðxÞ � yk should be minimized. This cost
function measures the discrepancy between the aim, y, and the response of the mathematical model, fðxÞ. So
we look for
1 In
x� ¼ arg min
x2X

kfðxÞ � yk: ð1Þ
A design problem, characterized by the model fðxÞ, the aim y 2 Y , and the space of possible controls X � Rn,
is a reachable design if the equality fðx�Þ ¼ y can be achieved for some x� 2 X .

2.3. The coarse model

The coarse model gives a simpler but less accurate description of the same phenomenon as the fine model. It
is denoted by cðzÞ 2 Rm, with z 2 Z � Rn the coarse model control variable. This model is assumed to be cheap

to evaluate but less accurate than the fine model. The set cðZÞ � Rm is the set of coarse model reachable

aims. For the coarse model we have the coarse model cost function, kcðzÞ � yk and we denote its minimizer
by z�,
z� ¼ arg min
z2Z

kcðzÞ � yk: ð2Þ
2.4. The space-mapping function

The similarity or discrepancy between the responses of two models is expressed by the misalignment function

rðz; xÞ ¼ kcðzÞ � fðxÞk. For a given x 2 X it is useful to know which z 2 Z yields the smallest discrepancy.
Therefore, the space-mapping function is introduced, p : X � Rn ! Z � Rn defined by
pðxÞ ¼ arg min
z2Z

rðz; xÞ ¼ arg min
z2Z

kcðzÞ � fðxÞk: ð3Þ
space-mapping terminology, manifold-mapping (MM) is a special case of output space mapping (OSM).
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2.5. Perfect mapping

To identify the cases where the accurate solution x* is related with the less accurate solution z� by the space-
mapping function, a space-mapping function p is called a perfect mapping iff z� ¼ pðx�Þ.

We notice that perfection is not a genuine property of the space-mapping function, because it also depends
on the data y considered. It is important to be aware that a space-mapping function can be perfect for one set
of data but imperfect for a different data set, and if a design is reachable a space-mapping is always perfect
irrespective of the coarse model used.
3. Primal and dual space-mapping solutions

In literature many variants of the space-mapping algorithm can be found [2,3]. The best known are aggres-
sive space-mapping (ASM) and trust-region ASM (TRASM). However, we can distinguish two fundamentally
different types: the primal and the dual approach.

The primal space-mapping approach seeks for a solution of the minimization problem
x�p ¼ arg min
x2X

kpðxÞ � z�k; ð4Þ
whereas the dual determines
x�d ¼ arg min
x2X

kcðpðxÞÞ � yk: ð5Þ
In the last equation we recognize cðpðxÞÞ as a surrogate model.
Both approaches coincide when z� 2 pðX Þ and p is injective. If, in addition, the mapping is perfect both x�p

and x�d are equal to x*. However, in general the space-mapping function p will not be perfect, and hence, a
space-mapping algorithm, based on either the primal or the dual approach, may not yield the solution of
the fine model optimization. The principle of the approach is summarized in Fig. 1.

4. Defect-correction iteration

The efficient solution of a complex problem by the iterative use of a simpler one, is known since long in
computational mathematics as defect-correction iteration [5]. To solve a nonlinear operator equation
Fx ¼ y; ð6Þ

where F : D � E! bD � bE is a continuous, generally nonlinear operator and E and bE are Banach spaces, de-
fect-correction iteration reads
x0 ¼ eG0y;

xkþ1 ¼ eGkþ1ðfFkxk �Fxk þ yÞ;

(
ð7Þ
where fFk is a simpler version of F and eGk is the (simple-to-evaluate) left-inverse of fFk.
Fig. 1. The space-mapping function pðxÞ ¼ arg minz2ZkcðzÞ � fðxÞk.
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For our optimization problems, where the design may be not reachable, y 2 bD, but y 62FðDÞ, so that no
solution for (6) exists. In this case we want to find the solution
x� ¼ arg min
x2D

kFx� ykbE : ð8Þ
With this problem we associate a defect-correction process for iterative optimization by taking E ¼ Rn,bE ¼ Rm, D ¼ X , bD ¼ Y , and by substitution of the operators:
Fx ¼ y() fðxÞ ¼ y;

x ¼ Gy() x ¼ arg min
n2X

kfðnÞ � yk;

fFkx ¼ y() cðpkðxÞÞ ¼ y;

x ¼ eGky() x ¼ arg min
n2X

kcðpkðnÞÞ � yk:

ð9Þ
Here pk is not the space-mapping function but an arbitrary (easy-to-compute) bijection, e.g., if X ¼ Z we
choose the identity. Notice that, in principle, also c ¼ ck might be adapted during the iteration.

With (9) we derive from (7) the defect-correction iteration scheme for optimization:
x0 ¼ arg min
x2X

kcðp0ðxÞÞ � yk;

xkþ1 ¼ arg min
x2X

kcðpkþ1ðxÞÞ � cðpkðxkÞÞ þ fðxkÞ � yk:

8<: ð10Þ
In this iteration every minimization involves the surrogate model, c � pk.

4.1. Orthogonality and the need for left-preconditioning

For the stationary points of the above process, limk!1xk ¼ x, we can derive [4]:
fðxÞ � y 2 cðZÞ?ðz�Þ: ð11Þ

Like the space-mapping methods, the above iteration has the disadvantage that, in general, the fixed point, x,
does not coincide with the solution of the fine model minimization problem, x*. This is due to the fact that the
approximate solution x satisfies (11), whereas the (local) minimum x* satisfies
fðx�Þ � y 2 fðX Þ?ðx�Þ:
Hence, differences between x and x* will be larger for larger distances between y and the sets fðX Þ and cðZÞ and
for larger angles between the linear manifolds tangential at fðX Þ and cðZÞ near the optima.

By these orthogonality relations we see that it is advantageous, both for the conditioning of the problem
and for the minimization of the residual, if the manifolds fðX Þ and cðZÞ are found parallel in the neigh-
bourhood of the solution. However, by space-mapping or by right-preconditioning the relation between
fðX Þ and cðZÞ remains unchanged. The fact that the fixed point of traditional space-mapping does, gener-
ally, not correspond with x� can be corrected by the introduction of an additional left-preconditioner.
Therefore we introduce such a preconditioner S so that near fðx�Þ 2 Y the manifold cðZÞ � Y is mapped
onto fðX Þ � Y :
fðxÞ � SðcðpkðxÞÞÞ:
This restores the orthogonality relation fðxÞ � y ? fðX ÞðxÞ. Thus it improves significantly the traditional
space-mapping approach and makes the solution x* a stationary point of the iteration. In the next section
we propose our manifold-mapping algorithm, where S is an affine operator which maps cðpðxkÞÞ to fðxkÞ
and, approximately, one tangential linear manifold onto the other.
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5. Manifold mapping, the improved space-mapping algorithm

We introduce the affine mapping S : Y ! Y such that ScðzÞ ¼ fðx�Þ for a proper z 2 Z, and the linear man-
ifold tangential to cðZÞ in cðzÞ is mapped onto the one tangential to fðX Þ in fðx�Þ. Because both fðX Þ and cðZÞ
are n-dimensional manifolds in Rm, the mapping S can be described by
Sv ¼ fðx�Þ þ Sðv� cðzÞÞ;

where S is an m� m-matrix of rank n. A full rank m� m-matrix S can be constructed, with a well-determined
part of rank n and a remaining part of rank m� n which is free to choose. Because of the supposed similarity
between the models f and c we keep the latter part close to the identity. The meaning of the mapping S is illus-
trated in Fig. 2.

So, we propose the following manifold-mapping (MM) algorithm [4], where the optional right-precondi-
tioner p : X ! Z is still an arbitrary non-singular operator, e.g., the identity.

(1) Set k = 0 and compute
x0 ¼ arg min
x2X

kcðpðxÞÞ � yk:
(2) Compute fðxkÞ and cðpðxkÞÞ.
(3) If k > 0, with Dci ¼ cðpðxk�iÞÞ � cðpðxkÞÞ and Df i ¼ fðxk�iÞ � fðxkÞ, i ¼ 1; . . . ;minðn; kÞ; we define DC

and DF to be the rectangular m�minðn; kÞ-matrices with respectively Dci and Df i as columns. Their sin-
gular value decompositions (SVD) are respectively DC ¼ UcRcV T

c and DF ¼ U f Rf V T
f .

(4) The next iterant is computed as
xkþ1 ¼ arg min
x2X

kcðpðxÞÞ � cðpðxkÞÞ þ ½DCDF y þ ðI � U cU T
c ÞA	ðfðxkÞ � yÞk: ð12Þ
(5) Stop if some convergence criterion is satisfied, otherwise set k :¼ k þ 1 and go to (2).

Here, A is an arbitrary m� m-matrix for which we prefer the identity and DF y denotes the pseudo-inverse of
DF . It can be shown [6] that (12) is asymptotically equivalent to
xkþ1 ¼ arg min
x2X

kSkðcðpðxÞÞÞ � yk; ð13Þ
where the affine mapping Sk, an approximation to S, is given by
Skv ¼ fðxkÞ þ Skðv� cðpðxkÞÞ; ð14Þ

with Sk ¼ DF DCy þ ðI � U fU T

f ÞðI � U cU T
c Þ.
Fig. 2. Manifold mapping.
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If the above iteration converges with fixed point x and mapping S, we have
fðxÞ � y 2 SðcðpðX ÞÞÞ?ðxÞ ¼ fðX Þ?ðxÞ:

This and the fact that SkðcðpðxkÞÞÞ ¼ fðxkÞ, makes that, under convergence to x, the fixed point is a (local)
optimum of the fine model minimization and as a consequence S ¼ S, cf. [6].

The improved space-mapping scheme,
xkþ1 ¼ arg min
x2X

kSkðcðpðxÞÞÞ � yk;
can also be recognized as defect-correction iteration with either fFk ¼ Sk � c � p and F ¼ f or withfFk ¼ Sk � c and F ¼ f � p�1.
6. A trust-region strategy

Linear convergence of the MM-algorithm is proved in [6] under the conditions that: (i) cðpðX ÞÞ and fðX Þ are
C2-manifolds, (ii) the models cðpðxÞÞ and fðxÞ show a sufficiently similar behaviour in the neighbourhood of
the solution, and (iii) the matrices DC and DF are sufficiently well-conditioned. A precise formulation of these
conditions is found in [6].

Although common choices for cðzÞ and fðxÞ easily imply the smoothness of the manifolds cðpðX ÞÞ and fðX Þ,
the success of MM-iteration hinges on the efficiency of the minimization for the coarse model problems and on
the similarity between cðzÞ and fðxÞ. However, in practice it is much harder to foresee the effect of requirement
(iii). In fact, in the initial phase of the iteration we cannot give any a priori guarantee that the matrices DC and
DF are well-conditioned. The problem is generally nonlinear and, because we want to reduce the number of
iterations as much as possible, large steps xk � xk�i can be expected. For these reasons, the conditioning of DC
and DF can become arbitrarily bad. Moreover, ill-conditioning of DF may further lead to large steps xk � xk�i,
which reduce the feasibility of the assumption that DC and DF approximate the tangential planes to, respec-
tively, the manifolds cðpðX ÞÞ and fðX Þ.

Therefore we have to introduce a trust-region strategy that controls the step-length in such a way that the
unwanted effects do no harm and convergence is accelerated. In addition to the reduction of unwanted large
step-sizes, we should take care of the possible ill-conditioning. Viz., the effect of an (almost) singular matrix
DC would be that the solution is sought in only a lower-dimensional sub-manifold of cðpðX ÞÞ, and an almost
singular matrix DF can lead to extremely large steps. Both effects are counteracted by regularization of the
matrices. The generalized singular value decomposition (GSVD) for the pair ðDC;DF Þ will serve that purpose,
instead of the SVD of DC and DF .

The GSVD of the matrices ðA;BÞ is (cf. [7]) a set of five matrices UA, UB, RA, RB, and V, such that
A ¼ U ARAV T and B ¼ U BRBV T;
with a regular matrix V, unitary matrices UA, UB, and diagonal matrices RA ¼ diagðrA
1 ; . . . ; rA

n Þ,
RB ¼ diagðrB

1 ; . . . ; rB
n Þ. The matrix DCDF y in (12) can now be written
DCDF y ¼ U cRcV TðV TÞ�1Ryf U T
f ¼ U cdiagðrc

i =r
f
i ÞU T

f � U cdiag
rc

i þ krc
1

rf
i þ krf

1

 !
U T

f ; with k P 0:
Regularization is introduced by taking k > 0. For vanishing k no regularization takes place and for k!1 the
matrix reduces to U cUT

f rc
1=r

f
1 , which is close to the identity if cðzÞ and fðxÞ have similar behaviour.

The choice of the parameter k in the trust-region MM-algorithm (TR-MM) is based on the success of the
previous iteration steps. If an iteration step is successful (i.e., the residual decreases) the value of k is divided by
2, otherwise k is multiplied by 2. In practice, k is never reduced below a tolerance value s, the machine accu-
racy or the precision of the data (in the scheme introduced here: the residue squared). The resulting TR-MM
algorithm is shown in Fig. 3. It should be noticed that the value of a few constants in the algorithm, like the
factor two for the amplification or reduction of k, is only based on heuristics. Further, the scheme contains an
(optional) damping parameter d P 0. For strongly nonlinear problems it can stabilize the convergence process
at the expense of additional function evaluations. We will see an example of its use in the next section.



Fig. 3. The trust-region manifold-mapping (TR-MM) algorithm.
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7. Examples showing the effect of regularization

As an example of the use of regularization in the TR-MM algorithm, we first show its behaviour for a sim-
ple problem from [4]. In the four cases considered below, the same fine and coarse model are used, but different
specifications y create essentially distinct situations (see [4, Section 5.1.2]): (i) reachable design, (ii) perfect
mapping, (iii) non-perfect mapping, and (iv) close local minima.

The examples in this section use fðxÞ ¼ fðx1; x2Þ ¼ ðx1ðx2ti þ 1Þ2Þi¼1;2;3 and cðxÞ ¼ cðx1; x2Þ ¼ ðx1ti þ x2Þi¼1;2;3

with ti 2 f�1; 0; 1g. For the tolerance parameter s we take s ¼ 10�12, we set the maximum number of itera-
tions to M = 100, and the damping parameter is not used (d = 0), except for the last example. We emphasize
that the MM-optimization method is not designed for such simple least squares problems, but for problems
where the f-evaluation is quite expensive. Examples of such elaborate cases from practice can be found, e.g., in
[8], and another example of practical relevance is shown in the last section of this paper. In the simple exam-
ples shown here, the coarse model is not specially adapted to the fine one, and particularly the last example
shows what adverse effects can be expected in such cases. Nevertheless, these problems can be solved by man-
ifold mapping.

(i) Reachable design: We take y ¼ ð0:081; 0:100; 0:121Þ. This makes a reachable design with solution
x� ¼ ð0:1; 0:1Þ. The problem is solved in 14 iterations (16 f-evaluations). In Fig. 4a we can see the iter-
ation path. It shows level curves of kcðxÞ � yk (the horizontal ellipse) and of kfðxÞ � yk (the more com-
plex shapes). The dots represent the iteration steps, starting from x0, in the centre of the ellipse. Fig. 4b
zooms in on the region near the fixed point of the iteration (the last 4 iterations and the f-level curves).
Fig. 4c shows the convergence history (the logarithm of the residue). In Fig. 4d we see the logarithm of



Fig. 4. Reachable design: solid line: step length log10ðs
1=2
k Þ; dashed line: log10ðkkÞ.
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the extreme singular values of DC (dashed) and DF (solid), and so, the condition numbers during iter-
ation. Fig. 4e represents the history of kk (dashed) and of the step-length

ffiffiffiffi
sk
p

(solid). The iteration stops
because the step-length becomes small enough. In contrast with all other examples shown, for this simple
problem the trust-region strategy has no positive effect. Without the trust-region strategy (i.e. k � s) the
solution is obtained after 12 iterations.

(ii) Perfect mapping: Here we take y ¼ ð0:10011; 0:10125; 0:10241Þ. This makes a residual norm of 5:5� 10�6

at the solution x� ¼ ð0:10125; 0:00568Þ. The problem is solved in 13 iterations (15 f-evaluations). The
iteration stops because the step-length becomes small enough. The convergence history is shown in
Fig. 5. The behaviour is similar to that for the reachable design: first the parameter k increases because
of the initial dissimilarity between the fine and the coarse model and then we see a monotonous decrease
until convergence is obtained. The matrices DC and DF remain well-conditioned. Without the trust-
region strategy (i.e. k � s) the solution is obtained after 51 iterations.

(iii) Non-perfect mapping: We take y ¼ ð0:00;�0:40; 0:10Þ. This makes a residual norm of 0:370 at the
solution x� ¼ ð�0:10069;�0:14121Þ. The problem is solved in 32 iterations (44 f-evaluations). The
iteration stops because the step-length becomes small enough. The convergence history is shown in
Fig. 6. In this case DF becomes very ill-conditioned and during the iteration process k has to be
increased several times. Without the trust-region strategy (i.e. k ¼ s) the solution is obtained after
52 iterations.

(iv) Nearby local minima: We take y ¼ ð0:00;�0:35; 0:20Þ. In this example the fine model has two local min-
ima in the neighbourhood of the coarse-model minimum. The local behaviour of the fine model near the
global minimum is much different from the behaviour of the coarse model, which is more similar to the
other local minimum. We recognize this in the Figs. 7 and 8, which show the level curves for this prob-
lem. The local behaviour of kcðxÞ � yk is represented by the horizontal ellipses. The global minimum of
kfðxÞ � yk (value = 0.36320) is found at x� ¼ ð0:00656; 4:00689Þ, whereas the other local minimum
(value = 0.38319) is seen at x� ¼ ð�0:05887;�0:35221Þ. In this example TR-MM without damping
(d = 0, Fig. 7) converges to the second local minimum (not the global one). The problem is solved in



Fig. 5. Perfect mapping (see the legend of Fig. 4).

Fig. 6. Non-perfect mapping (see the legend of Fig. 4).
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38 iterations (49 f-evaluations). The iteration stops because the step-length becomes small enough. The
convergence history is shown in Fig. 7c. Without the trust-region strategy (i.e. k � s) the iteration pro-
cess does not converge within M = 100 iterations.

Using the damping parameter d we can force the algorithm to find the global minimum. By taking d > 0 the
method selects a path with smaller steps. The effect is stronger for larger k. The iteration process arrives in the



Fig. 7. Two nearby local minima, damping parameter d = 0 (see the legend of Fig. 8).

P.W. Hemker, D. Echeverrı́a / Journal of Computational Physics 224 (2007) 464–475 473
attraction area for the global minimum, but because of the large discrepancy between the behaviour of
kcðxÞ � yk and kfðxÞ � yk near the global minimum, the convergence is relatively slow. The convergence his-
tory is shown in Fig. 8.
8. An example from engineering

We study the optimization of a die press [9] used for manufacturing anisotropic permanent magnets. It is
benchmark Problem 25 from the International Compumag Society, Testing Electromagnetic Analysis Meth-
ods (T.E.A.M.), www.compumag.co.uk/team.html. The molds and the pole are made of steel (see Fig. 9).
The specifications y are certain magnetic flux values computed at ten points along the curve e–f in the cavity.
The design variable x ¼ ½x1; x2; x3; x4	 determines the geometry of the molds. The space of controls X is simply
a polytope in R4. The full problem description can be found in [9].

The fine model f is based on simulation with second order triangular finite elements (around 120000
degrees of freedom). The cost function is F ðxÞ ¼ kfðxÞ � yk2

2. For the coarse model c we build a least
squares quadratic approximation by means of sixteen finite element solutions (vertices of the polytope
X) where the characteristics of the molds and the pole have been linearized. (These discretizations are
rather coarse, yielding less than 1000 degrees of freedom). The computational cost associated with the
construction and evaluation of the coarse model is negligible when compared with that for the fine
model.

We show in Table 1 the results for the die press optimization. MM without regularization moves away
from the optimum after the fourth iteration. The diverging tendency continues during the next iterations.
The fine model optimum x* is computed by TRMM in five iterations (eight equivalent fine model eval-
uations). We use differential evolution (DE) [10] for the coarse model optimum computation and for
every minimization process within the manifold-mapping approach. The alternative method used in prac-
tice, SQP, applied with the coarse model optimum z* as initial guess, performs much worse than TRMM.

http://www.compumag.co.uk/team.html


Fig. 8. Two nearby local minima, damping parameter d = 64.

Fig. 9. Geometry and design variables of the die press.
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9. Conclusion

In this paper we treat a two-level optimization method. Such methods use simple surrogate models to accel-
erate optimization processes in which the objective-function evaluation requires time-consuming computer
simulations. We take the traditional space-mapping method as a starting point and we show how this method
can be improved to obtain the manifold-mapping algorithm. Further, we present a new trust-region strategy
fitted for this manifold method and we give a number of examples to show its behaviour.



Table 1
Iteration history in the die-press optimization problem

# Iteration SQP MM TRMM

# f evals F(x) # f evals F(x) # f evals F(x)

1 11 0.0016 1 0.0017 1 0.0018
2 17 0.0005 2 0.0029 3 0.0013
3 23 0.0005 3 0.0007 4 0.0007
4 29 0.0005 4 0.0008 7 0.0007
5 35 0.0005 5 0.0013 8 0.0004

SQP was applied with the coarse model optimum z* as initial guess. The field # f evals denotes the cumulative number of equivalent fine
model evaluations (approximately proportional to computing time). The field F(x) indicates the cost function.
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